Novel chemical method for synthesis of LiV3O8 nanorods as cathode materials for lithium ion batteries

نویسندگان

  • Hai Yan Xu
  • Hao Wang
  • Zhi Qiang Song
  • Yao Wu Wang
  • Hui Yan
  • Masahiro Yoshimura
چکیده

A novel method which is based on the hydrothermal reaction was employed to synthesize LiV3O8. First, the mixture solution of LiOH, V2O5, and NH4OH was subjected to the hydrothermal reaction. The hydrothermal treatment yielded a clear, homogeneous solution. The evaporation of this solution led to the formation of a precursor gel. The gel was then heated at different temperatures in the range of 300–600 ◦C. The characterization by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) indicated that LiV3O8 nanorods have been obtained by this novel synthesis method. The electrochemical performance of the LiV3O8 nanorods have been investigated, which indicates that the highest discharge specific capacity of 302 mAh/g in the range of 1.8–4.0 V was obtained for the sample heated at 300 ◦C, and its capacity remained 278 mAh/g after 30 cycles. © 2003 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ synthesis of LiV3O8 nanorods on graphene as high rate-performance cathode materials for rechargeable lithium batteries.

We developed a facile two-step hydrothermal procedure to prepare hybrid materials of LiV3O8 nanorods on graphene sheets. The special structure endows them with the high-rate transportation of electrolyte ions and electrons throughout the electrode matrix, resulting in remarkable electrochemical performance when they were used as cathodes in rechargeable lithium batteries.

متن کامل

Template free synthesis of LiV3O8 nanorods as a cathode material for high-rate secondary lithium batteries

A novel, template-free, low-temperature method has been developed to synthesize LiV3O8 cathode material for high-power secondary lithium (Li) batteries. The LiV3O8 prepared using this new method was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The thermal decomposition process was investigated using thermogravimetric (...

متن کامل

LiV3O8/Polytriphenylamine Composites with Enhanced Electrochemical Performances as Cathode Materials for Rechargeable Lithium Batteries

LiV₃O₈/polytriphenylamine composites are synthesized by a chemical oxidative polymerization process and applied as cathode materials for rechargeable lithium batteries (RLB). The structure, morphology, and electrochemical performances of the composites are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, galvanostatic discharge/charge tests, an...

متن کامل

Mesoporous single-crystalline V2O5 nanorods assembled into hollow microspheres as cathode materials for high-rate and long-life lithium-ion batteries.

Mesoporous single-crystalline V2O5 nanorods assembled into novel hollow microspheres have been synthesized as cathode materials for lithium-ion batteries by a simple solvothermal treatment of NH4VO3 and ethylene glycol with subsequent annealing in air at 400 °C, which delivered a very high reversible capacity of 145.8 mA h g(-1) at 2.5-4.0 V (vs. theoretical value: 147 mA h g(-1)) with much imp...

متن کامل

Electrochemical Characterization of Low-Cost Lithium-Iron Orthosilicate Samples as Cathode Materials of Lithium-Ion Battery

Lithium-iron-orthosilicate is one of the most promising cathode materials for Li-ion batteries due to its safety, environmental brightness and potentially low cost. In order to produce a low cost cathode material, Li2FeSiO4/C samples are synthesized via sol-gel (SG; one sample) and solid state (SS; two samples with different carbon content), starting from Fe (III) in the raw materials (lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003